Can be Mouth Foodstuff Concern since Safe Sufficient because it Seems?

Author : McLaughlin From | Published On : 20 Apr 2025

It is not only the raw material of Traditional Chinese medicine preparations, but also the treasure of dietary therapy and herbal cuisine. This study not only reviewed the botany, phytochemistry and pharmacology of PQR, but also summarized its quality control, toxicity and industrial applications for the first time. This paper not only summarizes the development status of PQR, but also analyzes the shortcomings of the current research on PQR, and puts forward the corresponding solutions, in order to provide reference for future scholars to study PQR.Hypertensive disorders of pregnancy (HDP) are a group of morbid pregnancy complications, with preeclampsia (PE) being the most common subclassification among them. PE affects 2%-8% of pregnancies globally and threatens maternal and fetal health seriously. However, the only effective treatment of PE to date is the timely termination of pregnancy, albeit with increased perinatal risks. Hence, more emerging therapies for PE management are in urgent need. Originally introduced as the first-line therapy for type 2 diabetes mellitus, metformin (MET) has now been found in clinical trials to significantly reduce the incidence of gestational hypertension and PE in pregnant women with PE-related risks, including but not limited to pregestational diabetes mellitus, gestational diabetes mellitus, polycystic ovary syndrome, or obesity. Additionally, existing clinical data have preliminarily ensured the safety of taking MET during human pregnancies. Relevant lab studies have indicated that the underlying mechanism includescance to improve the design of relevant experiments and clinical trials in the future.Sanguisorba officinalis L. (SA) is a common herb for cancer treatment in the clinic, particularly during the consolidation phase to prevent occurrence or metastasis. Nevertheless, there are limited studies reporting the molecular mechanisms about its anti-metastatic function. It is well demonstrated that autophagy is one of the critical mechanisms accounting for metastasis and anti-cancer pharmacological actions of Chinese herbs. On the threshold, the regulatory effects and molecular mechanisms of SA in suppressing autophagy-related breast cancer metastasis were investigated in this study. In vitro findings demonstrated that SA potently suppressed the proliferation, colony formations well as metastasis process in triple-negative breast cancer. Network and biological analyses predicted that SA mainly targeted caveolin-1 (Cav-1) to induce anti-metastatic effects, and one of the core mechanisms was via regulation of autophagy. Further experiments-including western blotting, transmission electron microscopy, GFP-al transition. Overall, our findings not only indicate that SA acts as a novel late-phase autophagic inhibitor with anti-metastatic activities in triple-negative breast cancer, but also highlight Cav-1 as a regulator in controlling late-phase autophagic activity.We have reported that transient receptor potential melastatin-related 7 (TRPM7) regulates glioma stem cells (GSC) growth and proliferation through Notch, STAT3-ALDH1, and CD133 signaling pathways. In this study, we determined the major contributor(s) to TRPM7 mediated glioma stemness by further deciphering each individual Notch signaling. We first determined whether TRPM7 is an oncotarget in glioblastoma multiforme (GBM) using the Oncomine database. Next, we determined whether TRPM7 silencing by siRNA TRPM7 (siTRPM7) induces cell growth arrest or apoptosis to reduce glioma cell proliferation using cell cycle analysis and annexin V staining assay. We then examined the correlations between the expression of TRPM7 and Notch signaling activity as well as the expression of GSC markers CD133 and ALDH1 in GBM by downregulating TRPM7 through siTRPM7 or upregulating TRPM7 through overexpression of human TRPM7 (M7-wt). To distinguish the different function of channel and kinase domain of TRPM7, we further determined hored to that of wtTRPM7. Zileuton manufacturer Finally, targeting Notch1 effectively suppressed TRPM7-induced growth and proliferation of glioma cells through cell G1/S arrest and apoptotic induction. TRPM7 is responsible for sustained Notch1 signaling activation, enhanced expression of GSC markers CD133 and ALDH1, and regulation of glioma stemness, which contributes to malignant glioma cell growth and invasion.Autophagy is a catabolic process that targets its cargo for lysosomal degradation. In addition to its function in maintaining tissue homeostasis, autophagy is recognized to play a context-dependent role in cancer. Autophagy may inhibit tumor initiation under specific contexts; however, a growing body of evidence supports a pro-tumorigenic role of this pathway in established disease. In this setting, autophagy drives treatment resistance, metabolic changes, and immunosuppression both in a tumor-intrinsic and extrinsic manner. This observation has prompted renewed interest in targeting autophagy for cancer therapy. Novel genetic models have proven especially insightful, revealing unique and overlapping roles of individual autophagy-related genes in tumor progression. Despite identification of pharmacologically actionable nodes in the pathway, fundamental challenges still exist for successful therapeutic inhibition of autophagy. Here we summarize the current understanding of autophagy as a driver of resistance against targeted and immuno-therapies and highlight knowledge gaps that, if addressed, may provide meaningful advances in the treatment of cancer.Type 2 diabetes mellitus (T2DM) is a chronic disease that has become a global public health problem. Studies on T2DM prevention and treatment mostly focus on discovering therapeutic drugs. Artemisinin and its derivatives were originally used as antimalarial treatments. In recent years, the roles of artemisinins in T2DM have attracted much attention. Artemisinin treatments not only attenuate insulin resistance and restore islet ß-cell function in T2DM but also have potential therapeutic effects on diabetic complications, including diabetic kidney disease, cognitive impairment, diabetic retinopathy, and diabetic cardiovascular disease. Many in vitro and in vivo experiments have confirmed the therapeutic utility of artemisinin and its derivatives on T2DM, but no article has systematically demonstrated the specific role artemisinin plays in the treatment of T2DM. This review summarizes the potential therapeutic effects and mechanism of artemisinin and its derivatives in T2DM and associated complications, providing a reference for subsequent related research.